DocumentCode :
1619748
Title :
Quantitative evaluation of edge detectors using the minimum kernel variance criterion
Author :
Qiang Ji ; Haralick, Robert M.
Author_Institution :
Dept. of Comput. Sci., Nevada Univ., NV, USA
Volume :
2
fYear :
1999
Firstpage :
705
Abstract :
In this paper, we introduce a new criterion for analytically evaluating different edge detectors (both gradient and zero-crossing based methods) without the need of ground-truth information. The criterion is based on the observation that most edge detectors make a decision of whether a pixel is an edgel or not based on the result of convolution of the image with a kernel. The variance of the convolution output therefore directly affects the performance of an edge detector. We show how to compute the variance of a convolution. We then describe results from comparing four well-known edge detectors using the proposed criterion.
Keywords :
convolution; covariance analysis; edge detection; gradient methods; edge detectors; edgel; gradient based methods; image convolution; minimum kernel variance criterion; pixel; quantitative evaluation; zero-crossing based methods; Computer science; Convolution; Detectors; Face detection; Image analysis; Image edge detection; Kernel; Performance analysis; Pixel; Surface fitting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on
Conference_Location :
Kobe
Print_ISBN :
0-7803-5467-2
Type :
conf
DOI :
10.1109/ICIP.1999.822987
Filename :
822987
Link To Document :
بازگشت