DocumentCode :
1623408
Title :
Minimax long range parameter estimation
Author :
Tse, Johnson ; Bentsman, Joseph ; Miller, Norman
Author_Institution :
Dept. of Mech. & Ind. Eng., Illinois Univ., Urbana, IL, USA
Volume :
1
fYear :
1994
Firstpage :
277
Abstract :
This paper derives a robust long range prediction error estimator. The long range minimax prediction error (MPE) algorithm is developed by combining the robust (H) linear predictor and long range prediction error method. The resulting identification algorithm, which minimizes the peaks of the error spectrum rather than its integral on the unit circle, is shown to have better robustness properties than recursive least squares with ad hoc data prefiltering. The frequency domain properties of the MPE estimator indicate that the MPE estimator is equivalent to the RLS algorithm with prefilter. The MPE estimator can provide a better estimated model for the model based long range predictive controller. The resulting self-tuning predictive controller will have better overall stability and robustness properties then the H 2 self-tuning algorithms
Keywords :
error analysis; frequency-domain analysis; minimax techniques; parameter estimation; predictive control; robust control; self-adjusting systems; error spectrum; frequency domain; long range prediction error estimator; minimax prediction error; parameter estimation; robust linear predictor; self-tuning predictive controller; stability; Frequency domain analysis; Frequency estimation; Least squares methods; Minimax techniques; Parameter estimation; Prediction algorithms; Predictive models; Resonance light scattering; Robust stability; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Conference_Location :
Lake Buena Vista, FL
Print_ISBN :
0-7803-1968-0
Type :
conf
DOI :
10.1109/CDC.1994.410917
Filename :
410917
Link To Document :
بازگشت