DocumentCode :
1624
Title :
Fiber-Coupled, Time-Gated {\\hbox {Al}}_{2}{\\hbox {O}}_{3}!:!{\\hbox {C}} Radioluminescence Dosimetry Technique and Algorithm for Radiation Therapy With LINACs
Author :
Magne, Sylvain ; Deloule, Sybelle ; Ostrowsky, Aime ; Ferdinand, Pierre
Author_Institution :
Lab. de Mesures Opt., CEA, Gif-sur-Yvette, France
Volume :
60
Issue :
4
fYear :
2013
fDate :
Aug. 2013
Firstpage :
2998
Lastpage :
3007
Abstract :
An original algorithm for real-time In Vivo Dosimetry (IVD) based on Radioluminescence (RL) of dosimetric-grade Al2O3:C crystals is described and demonstrated in reference conditions with 12-MV photon beams from a Saturne 43 linear accelerator (LINAC), simulating External Beam Radiation Therapy (EBRT) treatments. During the course of irradiation, a portion of electrons is trapped within the Al2O3:C crystal while another portion recombines and generates RL, recorded on-line using an optical fiber. The RL sensitivity is dose-dependent and increases in accordance with the concentration of trapped electrons. Once irradiation is completed, the Al2O3:C crystal is reset by laser light (reusable) and the resultant OSL (Optically Stimulated Luminescence) is also collected back by the remote RL-OSL reader and finally integrated to yield the absorbed dose. During irradiation, scintillation and Cerenkov lights generated within the optical fiber (“stem effect”) are removed by a time-discrimination method involving a discriminating unit and a fiber-coupled BGO scintillator placed in the irradiation room, next to the LINAC. The RL signals were then calibrated with respect to reference dose and dose rate data using an ionization chamber (IC). The algorithm relies upon the integral of the RL and provides the accumulated dose (useful to the medical physicist) at any time during irradiation, the dose rate being derived afterwards. It is tested with both step and arbitrary dose rate profiles, manually operated from the LINAC control desk. The doses measured by RL and OSL are both compared to reference doses and deviations are about ±2% and ±1% respectively, thus demonstrating the reliability of the algorithm for arbitrary profiles and wide range of dose rates. Although the calculation was done off-line, it is amenable to real-time processing during irradiation.
Keywords :
Cherenkov radiation; alumina; carbon; dosimeters; dosimetry; fibre optic sensors; radiation therapy; scintillation; Al2O3:C; Cerenkov lights; Saturne 43 linear accelerator; arbitrary dose rate profiles; fiber-coupled BGO scintillator; fiber-coupled time-gated radioluminescence dosimetry; ionization chamber; irradiation; optical fiber; optically stimulated luminescence; real-time in vivo dosimetry; real-time processing; scintillation; simulating external beam radiation therapy; stem effect; time-discrimination method; trapped electrons; Crystals; Dosimetry; Electron traps; Integrated optics; Linear accelerators; Logic gates; Radiation effects; Alumina; in vivo dosimetry; optical fiber sensor; optically stimulated luminescence; radiation therapy; radioluminescence; time discrimination;
fLanguage :
English
Journal_Title :
Nuclear Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9499
Type :
jour
DOI :
10.1109/TNS.2013.2263640
Filename :
6544292
Link To Document :
بازگشت