Title :
Underwater Acoustic Sensor Networks: Target Size Detection and Performance Analysis
Author :
Liang, Qilian ; Cheng, Xiuzhen
Author_Institution :
Dept. of Electr. Eng, Univ. of Texas, Arlington, TX
Abstract :
In this paper, we propose a maximum-likelihood (ML) estimation algorithm for underwater target size detection using underwater acoustic sensor networks. Theoretical analysis demonstrates that our underwater sensor network can tremendously reduce the variance of target size estimation. We show that our ML estimator is unbiased and the variance of parameter estimation matches the Cramer-Rao lower bound. Simulations further validate these theoretical results.
Keywords :
maximum likelihood estimation; underwater acoustic communication; Cramer-Rao lower bound; maximum-likelihood estimation; parameter estimation; underwater acoustic sensor networks; underwater target size detection; Acoustic scattering; Acoustic sensors; Acoustic signal detection; Chemical and biological sensors; Maximum likelihood estimation; Performance analysis; Sensor phenomena and characterization; Sonar; Underwater acoustics; Underwater tracking;
Conference_Titel :
Communications, 2008. ICC '08. IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-2075-9
Electronic_ISBN :
978-1-4244-2075-9
DOI :
10.1109/ICC.2008.593