Title :
An extreme-point global optimization technique for convex hull pricing
Author :
Wang, Gui ; Shanbhag, Uday V. ; Zheng, Tongxin ; Litvinov, Eugene ; Meyn, Sean
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
Abstract :
Prices in electricity markets are given by the dual variables associated with the supply-demand constraint in the dispatch problem. However, in unit-commitment-based day-ahead markets, these variables are less easy to obtain. A common approach relies on resolving the dispatch problem with the commitment decisions fixed and utilizing the associated dual variables. Yet, this avenue leads to inadequate revenues to generators and necessitates an uplift payment to be made by the market operator. Recently, a convex hull pricing scheme has been proposed to reduce the impact of such payments and requires the global maximization of the associated Lagrangian dual problem, which is, in general, a piecewise-affine concave function. In this paper, we present an extreme-point-based finite-termination procedure for obtaining such a global maximizer. Unlike standard subgradient schemes where an arbitrary subgradient is used, we present a novel technique where the steepest ascent direction is constructed by solving a continuous quadratic program. The scheme initiates a move along this direction with an a priori constant steplength, with the intent of reaching the boundary of the face. A backtracking scheme allows for mitigating the impact of excessively large steps. Termination of the scheme occurs when the set of subgradients contains the zero vector. Preliminary numerical tests are seen to be promising and display the finite-termination property. Furthermore, the scheme is seen to significantly outperform standard subgradient methods.
Keywords :
concave programming; convex programming; load dispatching; power markets; pricing; quadratic programming; associated Lagrangian dual problem; backtracking scheme; continuous quadratic program; convex hull pricing scheme; dispatch problem; electricity markets; extreme-point global optimization technique; extreme-point-based finite-termination procedure; finite-termination property; global maximization; market operator; piecewise-afflne concave function; preliminary numerical tests; standard subgradient methods; steepest ascent direction; supply-demand constraint; unit-commitment-based day-ahead markets; uplift payment; Convergence; Economics; Electricity supply industry; Face; Generators; Optimization; Pricing; Convex hull price; Lagrangian relaxation; electricity markets; nondifferentiable optimization; uplift payments;
Conference_Titel :
Power and Energy Society General Meeting, 2011 IEEE
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4577-1000-1
Electronic_ISBN :
1944-9925
DOI :
10.1109/PES.2011.6039395