DocumentCode :
1630287
Title :
On the finite element method for the time-space fractional advection dispersion equation
Author :
Li, Changpin ; Zhao, Zhengang
Author_Institution :
Dept. of Math., Shanghai Univ., Shanghai, China
fYear :
2010
Firstpage :
458
Lastpage :
463
Abstract :
In this paper, we study the time-space fractional order (fractional for simplicity) advection dispersion equation, which can be an application as a model for anomalous diffusion or fractional diffusion. The fully discrete numerical approximation is analyzed where the Galerkin finite element method for the space Riemann-Liouville fractional derivative with order 1 + β ∈ [1; 2) and the finite difference scheme for the time Caputo derivative with order α ∈ (0, 1). Results on variational solution of the error estimates are presented. Numerical examples are included to confirm the theoretical estimates.
Keywords :
Galerkin method; differentiation; diffusion; finite element analysis; variational techniques; Galerkin finite element method; anomalous diffusion model; discrete numerical approximation; error estimates; fractional diffusion model; space Riemann-Liouville fractional derivative; time Caputo derivative; time-space fractional advection dispersion equation; variational solution; Manganese; Caputo derivative; Riemann-Liouville derivative; Time-space fractional advection dispersion equation; difference method; finite element method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on
Conference_Location :
Qingdao, ShanDong
Print_ISBN :
978-1-4244-7101-0
Type :
conf
DOI :
10.1109/MESA.2010.5551995
Filename :
5551995
Link To Document :
بازگشت