DocumentCode :
1631628
Title :
Application of interval type-2 fuzzy logic for estimating module relevance in Sugeno integration of modular neural networks
Author :
Mendoza, Olivia ; Melin, Patricia ; Castillo, Oscar
Author_Institution :
Sch. of Enginnering of UABC, Univ. of Tijuana, Tijuana, Mexico
fYear :
2009
Firstpage :
2120
Lastpage :
2125
Abstract :
In this work we describe a fuzzy inference system to determine the relevance of each module in modular neural networks for images recognition. The tests were made with Type 1 and Interval type-2 fuzzy inference system, to compare the performance. In both cases the fusion operator for the modules is the Sugeno integral, and the parameters to estimate are the fuzzy densities.
Keywords :
fuzzy logic; image recognition; neural nets; Sugeno integration; image recognition; interval type-2 fuzzy logic; modular neural networks; module relevance estimation; type-2 fuzzy inference system; Decision making; Feedforward neural networks; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Image databases; Image edge detection; Image recognition; Neural networks; System testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference on
Conference_Location :
Jeju Island
ISSN :
1098-7584
Print_ISBN :
978-1-4244-3596-8
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2009.5277419
Filename :
5277419
Link To Document :
بازگشت