DocumentCode :
1632160
Title :
Optical diagnostics on helical flux compression generators
Author :
Neuber, A. ; Dickens, J. ; Krompholz, H. ; Kristiansen, M. ; Schmidt, M. ; Baird, J. ; Worsey, P.
Author_Institution :
Dept. of Electr. Eng., Texas Tech. Univ., Lubbock, TX, USA
Volume :
2
fYear :
1999
Firstpage :
632
Abstract :
Explosively driven magnetic flux compression (MFC) has been an object of research for more than three decades. Actual interest in the basic physical picture of flux compression has been heightened by a newly started Multi University Research Initiative. The emphasis is on helical flux compression generators comprising a hollow cylindrical metal liner filled with high explosives and at least one helical coil surrounding the liner. After the application of a seed current, magnetic flux is trapped and high current is generated by moving, i.e. expanding, the liner explosively along the winding of the helical coil. Several key factors involved in the temporal development can be addressed by optical diagnostics. (1) The uniformity of liner expansion is captured by framing camera photography and supplemented by laser illuminated high spatial and temporal resolution imaging. Also, X-ray flash photography is insensitive to possible image blur by shockwaves coming from the exploding liner. (2) The thermodynamic state of the shocked gas is assessed by spatially and temporally resolved emission spectroscopy. (3) The moving liner/coil contact point is a possible source of high electric losses and is preferentially also monitored by emission spectroscopy. Since optical access to the region between liner and coil is not always guaranteed, optical fibers can be used to extract light from the generator. The information so gained will give, together with detailed electrical diagnostics, more insight into the physical loss mechanisms involved in MFC.
Keywords :
X-ray applications; fibre optic sensors; magnetic flux; measurement by laser beam; pulsed power supplies; radiography; Multi University Research Initiative; X-ray flash photography; emission spectroscopy; explosively driven magnetic flux compression; flux compression; framing camera photography; helical coil; helical flux compression generators; high current generation; high electric losses; high explosives; hollow cylindrical metal liner; laser illuminated high spatial resolution imaging; laser illuminated high temporal resolution imaging; light extraction; liner expansion; magnetic flux trapping; moving liner/coil contact point; optical access; optical diagnostics; optical fibers; physical loss mechanisms; seed current; shocked gas thermodynamic state; spatially resolved emission spectroscopy; temporally resolved emission spectroscopy; Cameras; Coils; Explosives; Image resolution; Magnetic flux; Optical losses; Photography; Research initiatives; Spatial resolution; Spectroscopy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pulsed Power Conference, 1999. Digest of Technical Papers. 12th IEEE International
Conference_Location :
Monterey, CA, USA
Print_ISBN :
0-7803-5498-2
Type :
conf
DOI :
10.1109/PPC.1999.823591
Filename :
823591
Link To Document :
بازگشت