Title :
QCM and SAW transducers allow analyte detection from nanometer- to micrometer-dimensions using imprinting techniques
Author :
Dickert, F.L. ; Greibl, W. ; Haderspock, C. ; Hayden, O. ; Rohrer, A. ; Scholl, G. ; Wolff, Ulrike
Author_Institution :
Inst. of Anal. Chem., Wien Univ., Vienna, Austria
fDate :
6/23/1905 12:00:00 AM
Abstract :
Mass-sensitive devices like the quartz crystal microbalance (QCM) and surface acoustic wave (SAW) devices show a major advantage as a transducer principle as every analyte can be detected due to its mass. In order to transfer QCMs and SAWS into chemical sensors a layer has to be applied in which the desired analyte is preferentially incorporated. Such coatings can vary from molecular hollows like calix[n]arenes to monolayers and molecular imprinted polymers (MIP). MIPs are produced by polymerization of carefully selected monomers around a template, the desired analyte. Such monomers can carry functional groups which interact with the analyte. When the template is removed by evaporation or washed out, it leaves behind specially adapted hollows in respect to size and interactions in which the analyte can be re-included. With these sensitive layers it was possible to achieve selectivities for poly aromatic hydrocarbons which are comparable to that of natural antibodies. Bulk imprinted MIPs allow the synthesis of,highly packed artificial, receptor sites for small organic molecules. The high amount of sites within the coating of a QCM/SAW allows detection limits down to the ppb range. Due to diffusion limitations the imprinting technique has to be adapted to the size of the analyte. The technique is not limited to single compounds, complex mixtures can also be used as templates. In this way it was possible to determine motor oil degradation. Even whole cells can act as imprinting media
Keywords :
biosensors; chemical sensors; microbalances; polymer films; polymerisation; surface acoustic wave sensors; surface acoustic wave transducers; QCM transducers; SAW transducers; analyte detection; biomass detection; cellular templates; chemical sensors; molecular imprinted polymers; oil degradation sensor; on-chip polymerization; poly aromatic hydrocarbons; single cell detection; surface imprinting concept; yeast imprinted polymers; Acoustic signal detection; Acoustic transducers; Acoustic waves; Chemical analysis; Chemical sensors; Coatings; Hydrocarbons; Polymer films; Surface acoustic wave devices; Surface acoustic waves;
Conference_Titel :
Frequency Control Symposium and PDA Exhibition, 2001. Proceedings of the 2001 IEEE International
Conference_Location :
Seattle, WA
Print_ISBN :
0-7803-7028-7
DOI :
10.1109/FREQ.2001.956335