• DocumentCode
    1632678
  • Title

    Automatically infant pain recognition based on LDA classifier

  • Author

    Naufal Mansor, M. ; Nazri Rejab, M. ; Hi-Fi Syam, S. ; Hi-Fi Syam B, Addzrull

  • Author_Institution
    Sch. of Mechatron. Eng., Univ. Malaysia Perlis, Kangar, Malaysia
  • Volume
    2
  • fYear
    2012
  • Firstpage
    380
  • Lastpage
    382
  • Abstract
    This paper discusses the challenges and possibilities of infant pain automatic detection and analysis of infant faces in the scene. The first module implements Haar Cascade Classifier to detect the face. Secondly, extracts the features of faces based on Principal Component Analysis. Finally a LDA classifier used to classify the pain score. From the trial, it is found that the identification rate of reaches 93.12%.
  • Keywords
    face recognition; image classification; object detection; principal component analysis; Haar cascade classifier; LDA classifier; automatically infant pain recognition; face detection; infant faces; linear discriminant analysis; principal component analysis; Educational institutions; Feature extraction; Monitoring; Pain; Pediatrics; Principal component analysis; Detection of facial changes; LDA classifier; NICU patient;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Instrumentation & Measurement, Sensor Network and Automation (IMSNA), 2012 International Symposium on
  • Conference_Location
    Sanya
  • Print_ISBN
    978-1-4673-2465-6
  • Type

    conf

  • DOI
    10.1109/MSNA.2012.6324600
  • Filename
    6324600