DocumentCode
1633745
Title
Design for robustness edgegray detection CNN
Author
Li, Guodong ; Min, Lequan ; Zang, Hongyan
Author_Institution
Dept. of Math. & Mech., Univ. of Sci. & Technol., Beijing, China
Volume
2
fYear
2004
Firstpage
1061
Abstract
The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological vision. The paper sets up a theorem to design a robustness template CNN for edge gray detection in gray-scale, which provides parameter inequalities for determining parameter intervals for implementing the corresponding tasks. The edges in two different kinds of gray-scale image are successfully detected by the edgegray CNNs designed via the theorem.
Keywords
cellular neural nets; edge detection; robot vision; stability; video signal processing; visual perception; biological vision; cellular neural network; cellular nonlinear network; edge detection; edge gray detection; gray-scale image; image signal processing; parameter inequalities; parameter intervals; robotic visions; video signal processing; Cellular neural networks; Gray-scale; Image edge detection; Laplace equations; Mathematics; Object detection; Physics; Pixel; Robot vision systems; Robustness;
fLanguage
English
Publisher
ieee
Conference_Titel
Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on
Print_ISBN
0-7803-8647-7
Type
conf
DOI
10.1109/ICCCAS.2004.1346360
Filename
1346360
Link To Document