• DocumentCode
    1633745
  • Title

    Design for robustness edgegray detection CNN

  • Author

    Li, Guodong ; Min, Lequan ; Zang, Hongyan

  • Author_Institution
    Dept. of Math. & Mech., Univ. of Sci. & Technol., Beijing, China
  • Volume
    2
  • fYear
    2004
  • Firstpage
    1061
  • Abstract
    The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological vision. The paper sets up a theorem to design a robustness template CNN for edge gray detection in gray-scale, which provides parameter inequalities for determining parameter intervals for implementing the corresponding tasks. The edges in two different kinds of gray-scale image are successfully detected by the edgegray CNNs designed via the theorem.
  • Keywords
    cellular neural nets; edge detection; robot vision; stability; video signal processing; visual perception; biological vision; cellular neural network; cellular nonlinear network; edge detection; edge gray detection; gray-scale image; image signal processing; parameter inequalities; parameter intervals; robotic visions; video signal processing; Cellular neural networks; Gray-scale; Image edge detection; Laplace equations; Mathematics; Object detection; Physics; Pixel; Robot vision systems; Robustness;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on
  • Print_ISBN
    0-7803-8647-7
  • Type

    conf

  • DOI
    10.1109/ICCCAS.2004.1346360
  • Filename
    1346360