Title :
Design for robustness edgegray detection CNN
Author :
Li, Guodong ; Min, Lequan ; Zang, Hongyan
Author_Institution :
Dept. of Math. & Mech., Univ. of Sci. & Technol., Beijing, China
Abstract :
The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological vision. The paper sets up a theorem to design a robustness template CNN for edge gray detection in gray-scale, which provides parameter inequalities for determining parameter intervals for implementing the corresponding tasks. The edges in two different kinds of gray-scale image are successfully detected by the edgegray CNNs designed via the theorem.
Keywords :
cellular neural nets; edge detection; robot vision; stability; video signal processing; visual perception; biological vision; cellular neural network; cellular nonlinear network; edge detection; edge gray detection; gray-scale image; image signal processing; parameter inequalities; parameter intervals; robotic visions; video signal processing; Cellular neural networks; Gray-scale; Image edge detection; Laplace equations; Mathematics; Object detection; Physics; Pixel; Robot vision systems; Robustness;
Conference_Titel :
Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on
Print_ISBN :
0-7803-8647-7
DOI :
10.1109/ICCCAS.2004.1346360