DocumentCode :
1633808
Title :
Anomaly detection in multidimensional data using negative selection algorithm
Author :
Dasgupta, Dipankar ; Majumdar, Nivedita Sumi
Author_Institution :
Div. of Comput. Sci., Univ. of Memphis, TN, USA
Volume :
2
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
1039
Lastpage :
1044
Abstract :
While dealing with sensitive personnel data, the data have to be maintained to preserve integrity and usefulness. The mechanisms of the natural immune system are very promising in this area, it being an efficient anomaly or change detection system. This paper reports anomaly detection results with single and multidimensional data sets using the negative selection algorithm developed by Forrest et al. (1994)
Keywords :
administrative data processing; data integrity; database management systems; personnel; anomaly detection; change detection system; data integrity; multidimensional data; natural immune system; negative selection algorithm; sensitive personnel data; Change detection algorithms; Computer science; Databases; Frequency; Humans; Immune system; Monitoring; Multidimensional systems; Pattern recognition; Personnel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on
Conference_Location :
Honolulu, HI
Print_ISBN :
0-7803-7282-4
Type :
conf
DOI :
10.1109/CEC.2002.1004386
Filename :
1004386
Link To Document :
بازگشت