DocumentCode :
1633900
Title :
The robustness design of templates of CNN for detecting inner corners of objects in gray-scale images
Author :
Ming, Lei ; Min, Lequan
Author_Institution :
Dept. of Math. & Mech., Beijing Univ. of Sci. & Technol., China
Volume :
2
fYear :
2004
Firstpage :
1090
Abstract :
The paper presents a theorem for designing the robustness template parameters of cellular neural/nonlinear network (CNN) for extracting inner corners of objects in gray-scale images. The theorem provides parameter inequalities for determining parameter intervals for implementing the corresponding tasks. The designed CNN has a linear A-template and a nonlinear B-template with two thresholds. A first numerical simulation example shows that the CNN designed via our method successfully detects the inner corners of objects in gray-scale images. A second one implies that the inner corner detection CNN may extract inner corners of objects in gray-scale images with Gaussian noise if suitable thresholds of the CNN are chosen.
Keywords :
cellular neural nets; feature extraction; image processing; stability; Gaussian noise; cellular neural network; cellular nonlinear network; gray-scale images; linear A-template; nonlinear B-template; object inner corner detection; object inner corner extraction; parameter inequalities; parameter intervals; robustness template design; Cellular neural networks; Gray-scale; Image edge detection; Image processing; Mathematics; Nearest neighbor searches; Neural networks; Object detection; Pixel; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on
Print_ISBN :
0-7803-8647-7
Type :
conf
DOI :
10.1109/ICCCAS.2004.1346366
Filename :
1346366
Link To Document :
بازگشت