DocumentCode :
1636232
Title :
Adaptive particle swarm optimization: detection and response to dynamic systems
Author :
Hu, Xiaohui ; Eberhart, Russell C.
Author_Institution :
Dept. of Biomed. Eng., Purdue Univ., West Lafayette, IN, USA
Volume :
2
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
1666
Lastpage :
1670
Abstract :
This paper introduces an adaptive PSO, which automatically tracks various changes in a dynamic system. Different environment detection and response techniques are tested on the parabolic and Rosenbrock benchmark functions, and re-randomization is introduced to respond to the dynamic changes. Performance on the benchmark functions with various severities is analyzed
Keywords :
evolutionary computation; optimisation; Rosenbrock benchmark functions; adaptive particle swarm optimization; dynamic system; environment detection; evolutionary computation; Benchmark testing; Biomedical engineering; Dynamic programming; Equations; Evolutionary computation; Heuristic algorithms; Multidimensional systems; Particle swarm optimization; Performance analysis; Random number generation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on
Conference_Location :
Honolulu, HI
Print_ISBN :
0-7803-7282-4
Type :
conf
DOI :
10.1109/CEC.2002.1004492
Filename :
1004492
Link To Document :
بازگشت