DocumentCode :
1640325
Title :
Diversity enhanced Adaptive Evolutionary Programming for solving single objective constrained problems
Author :
Mallipeddi, R. ; Suganthan, P.N. ; Qu, B.Y.
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore
fYear :
2009
Firstpage :
2106
Lastpage :
2113
Abstract :
In Evolutionary Algorithms, the occurrence of premature convergence is due to lack of diversity in the population during the search process. The effect may be more predominant if the optimization problem includes constraints. In this paper we propose an explicit memory based diversity enhancement Adaptive Evolutionary Programming (DivEnh-AEP) method to solve constraint optimization problems of CEC 2006.
Keywords :
convergence; evolutionary computation; optimisation; constraint optimization problem; diversity enhancement adaptive evolutionary programming; evolutionary algorithm; explicit memory; premature convergence; search process; single objective constrained problem; Constraint optimization; Convergence; Evolutionary computation; Genetic mutations; Genetic programming; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2009. CEC '09. IEEE Congress on
Conference_Location :
Trondheim
Print_ISBN :
978-1-4244-2958-5
Electronic_ISBN :
978-1-4244-2959-2
Type :
conf
DOI :
10.1109/CEC.2009.4983201
Filename :
4983201
Link To Document :
بازگشت