DocumentCode :
1642040
Title :
Rule approximation in metric spaces
Author :
Kovács, L.
Author_Institution :
Dept. of Inf. Technol., Univ. of Miskolc, Miskolc, Hungary
fYear :
2010
Firstpage :
49
Lastpage :
52
Abstract :
The classical fuzzy rule interpolators work in Euclidean spaces where the new fuzzy value can be generated from the training values. The paper investigates the case when the fuzzy values are defined over the general metric spaces. In this case a classification process is used to approximate the requested value. The paper introduces a base method for this classification process.
Keywords :
fuzzy reasoning; fuzzy set theory; interpolation; pattern classification; Euclidean spaces; classification process; fuzzy rule interpolators; fuzzy value; metric spaces; rule approximation; Bismuth; Extraterrestrial measurements; Fuzzy sets; Informatics; Information technology; Interpolation; Machine intelligence; Shape; Space technology; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applied Machine Intelligence and Informatics (SAMI), 2010 IEEE 8th International Symposium on
Conference_Location :
Herlany
Print_ISBN :
978-1-4244-6422-7
Type :
conf
DOI :
10.1109/SAMI.2010.5423702
Filename :
5423702
Link To Document :
بازگشت