Author :
Ehwald, K.E. ; Knolll, D. ; Heinemann, B. ; Chang, K. ; Kitchgessner, J. ; Mauntel, R. ; Lim, I.S. ; Steele, J. ; Schley, P. ; Tillack, B. ; Wolff, A. ; Blum, K. ; Winkler, W. ; Pierschel, M. ; Jagdhold, U. ; Barth, R. ; Grabolla, T. ; Erzgraber, H.J. ; H
Abstract :
We will describe the first modular integration of a SiGe:C heterojunction bipolar transistor (SiGe:C HBTs) into a conventional 0.25 /spl mu/m, epi-free CMOS platform. The high temperature stability of base doping profiles in SiGe:C HBTs and an optimized collector linkage have allowed the modular integration of an npn device with f/sub T//f/sub max/ of 55/90 GHz into two variants of a conventional epi-free 0.25 /spl mu/m CMOS platform. In both cases, the original CMOS steps and the electrical parameters of the CMOS devices remain essentially unchanged. Yield and electrical characteristics of the integrated SiGe:C HBT are shown to be the same as those from a bipolar-only process.
Keywords :
BiCMOS integrated circuits; Ge-Si alloys; carbon; heterojunction bipolar transistors; integrated circuit technology; semiconductor materials; 0.25 micron; 55 GHz; 90 GHz; BiCMOS process; NPN device; SiGe:C; SiGe:C heterojunction bipolar transistor; collector linkage; deep submicron epi-free CMOS process; doping profile; electrical characteristics; modular integration; temperature stability; yield; BiCMOS integrated circuits; CMOS process; CMOS technology; Epitaxial growth; Germanium silicon alloys; Heterojunction bipolar transistors; MOS devices; Radio frequency; Silicon germanium; Stability;