DocumentCode :
1646072
Title :
Faults diagnosis of stochastic dynamic systems based on neural network probability density function estimation
Author :
Grishin, Yuri ; Konopko, Krzysztof
Author_Institution :
Fac. of Electr. Eng., Bialystok Tech. Univ., Poland
Volume :
1
fYear :
2004
Firstpage :
335
Abstract :
The paper presents a fault diagnosis algorithm based on multidimensional probability density function (pdf) estimation which is suitable for stochastic nonlinear systems. The pdf of symptom vector is estimated with use of the Radial-Basis Function (RBF) and Hyperradial-Basis Function (HRBF) artificial neural networks (NN). The numerical example of diagnosis of a nonlinear system is presented. The influences of the NN parameters and learning on the algorithm performance are discussed.
Keywords :
control system synthesis; fault diagnosis; nonlinear dynamical systems; probability; radial basis function networks; stochastic systems; artificial neural networks; fault diagnosis algorithm; hyperradial-basis function; multidimensional probability density function estimation; neural network; nonlinear system diagnosis; radial-basis function; stochastic dynamic systems; symptom vector; Artificial neural networks; Data mining; Fault detection; Fault diagnosis; Multidimensional systems; Neural networks; Neurons; Nonlinear systems; Probability density function; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrotechnical Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean
Print_ISBN :
0-7803-8271-4
Type :
conf
DOI :
10.1109/MELCON.2004.1346863
Filename :
1346863
Link To Document :
بازگشت