Title :
Using ant colony optimization in software development project scheduling
Author :
Suri, Bharti ; Jajoria, Pooja
Author_Institution :
Guru Gobind Singh Indraprastha Univ., New Delhi, India
Abstract :
Resource allocation and tasks assignment to software development teams are very crucial and arduous activities that can affect a project´s cost and completion time. Solution for such problem is NP-Hard and requires software managers to be supported with efficient tools that can perform such allocation and can resolve the software development project scheduling problem (SDPSP) more efficiently. Ant colony optimization (ACO) is a rapidly evolving meta-heuristic technique based on the real life behavior of ants and can be used to solve NP-Hard (SDPSP) problem. Different versions of ACO meta-heuristic have already been applied to the software project scheduling problem in the past that took various resources into account. We have applied elitist strategy of ACO (elitist ant system) for solving SDPSP in a parameter-constrained environment taking project´s cost and duration into consideration. The objective of the ACO-SDPSP methodology allows software project managers and schedulers to assign most effective set of employees that can contribute in minimizing cost and duration of the software project. Experimental results show that the proposed ACO-SDPSP methodology is promising in achieving the desired results.
Keywords :
ant colony optimisation; computational complexity; cost reduction; project management; scheduling; software development management; team working; ACO metaheuristic; ACO-SDPSP method; NP-hard problem; SDPSP problem; ant colony optimization; cost minimization; elitist ant system; employee assignment; parameter-constrained environment; project completion time; project cost; project duration; rapidly evolving metaheuristic technique; software development project scheduling problem; software development teams; software project management; software project scheduling problem; task assignment; Ant colony optimization; Planning; Project management; Remuneration; Scheduling; Software; Software algorithms; Ant colony optimization; Software development project scheduling; Software project management;
Conference_Titel :
Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on
Conference_Location :
Mysore
Print_ISBN :
978-1-4799-2432-5
DOI :
10.1109/ICACCI.2013.6637505