DocumentCode :
1651990
Title :
Texture classifiers generated by genetic programming
Author :
Song, Andy ; Ciesielski, Vic ; Williams, Hugh E.
Author_Institution :
Sch. of Comput. Sci. & Inf. Technol., RMIT Univ., Melbourne, Vic., Australia
Volume :
1
fYear :
2002
Firstpage :
243
Lastpage :
248
Abstract :
We investigate the behaviour of image texture classifiers generated by genetic programming. We propose techniques to understand how classifiers capture textural characteristics and for discussing the effectiveness of different classifiers. Our results show that regularities of patterns can be detected by the genetic programming method without predefined knowledge
Keywords :
genetic algorithms; image classification; image texture; experiments; genetic programming; image classification; image texture classifiers; pattern regularities; textural characteristics; Arithmetic; Australia; Computer science; Data mining; Genetic programming; Image generation; Image texture; Information technology; Pixel; Problem-solving;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on
Conference_Location :
Honolulu, HI
Print_ISBN :
0-7803-7282-4
Type :
conf
DOI :
10.1109/CEC.2002.1006241
Filename :
1006241
Link To Document :
بازگشت