Title :
Holistic modeling of embedded systems with multi-discipline feedback: Application to a Precollision Mitigation Braking System
Author :
Lévêque, A. ; Pêcheux, F. ; Louërat, M-M ; Aboushady, H. ; Cenni, F. ; Scotti, S. ; Massouri, A. ; Clavier, L.
Author_Institution :
LIP6, Univ. Pierre et Marie Curie, Paris, France
Abstract :
The paper presents the principles, techniques and tools for the efficient modeling and simulation, at the component level, of an heterogeneous system composed of Wireless Sensor Network nodes that exhibits complex multi-discipline feedback loops that are likely to be found in many state-of-the-art applications such as cyber-physical systems. A Precollision Mitigation Braking System (PMBS) is used as a pragmatic case study to validate the whole approach. The component models presented (60 GHz communication channel, QPSK RF transceiver, CMOS video sensor, digital microcontroller, simplified car kinetic engine) are written in SystemC and its analog Mixed-Signal extensions, SystemC-AMS, and belong to five distinct yet highly interwoven disciplines: newtonian mechanics, op to-electronics, analog RF, digital and embedded software. The paper clearly exhibits the complex multi-discipline feed- back loop of this automotive application and the related model composability issues. Using the opto-electrical stimulus and the received RF inter-vehicle data, a car is able to exploit its environmental data to autonomously adjust its own velocity. This adjustment impacts the physical environment that in turns modifies the RF communication conditions. Results show that this holistic first-order virtual prototype can be advantageously used to jointly develop the final embedded software and to refine any of its hardware component part.
Keywords :
automotive engineering; braking; embedded systems; mechanical engineering computing; mobile communication; optoelectronic devices; quadrature phase shift keying; radio transceivers; wireless sensor networks; RF inter-vehicle data; SystemC; SystemC-AMS; analog RF; analog mixed-signal extensions; automotive application; complex multidiscipline feedback loops; component models; composability issues; cyber-physical systems; digital software; embedded software; embedded systems; heterogeneous system; holistic first-order virtual prototype; holistic modeling; newtonian mechanics; opto-electrical stimulus; opto-electronics; precollision mitigation braking system; wireless sensor network nodes; Embedded software; Kinetic theory; Radio frequency; Transceivers; Vehicles; Wireless sensor networks;
Conference_Titel :
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012
Conference_Location :
Dresden
Print_ISBN :
978-1-4577-2145-8
DOI :
10.1109/DATE.2012.6176567