DocumentCode :
1653616
Title :
Throughput Guaranteed Restorable Routing Without Traffic Prediction
Author :
Kodialam, M. ; Lakshman, T.V. ; Sengupta, Sudipta
Author_Institution :
Bell Labs., Lucent Technol., Murray Hill, NJ
fYear :
2006
Firstpage :
137
Lastpage :
146
Abstract :
Two-phase routing, where traffic is first distributed to intermediate nodes before being routed to the final destination, has been recently proposed for handling widely fluctuating traffic without the need to adapt network routing to changing traffic. Pre-configuring the network in a traffic independent manner using two-phase routing simplifies network operation considerably. In this paper, we extend this routing scheme by providing resiliency against link failures through two different fast restoration mechanisms - local (link/span) based and end-to-end (path) based. We view this as important progress towards adding carrier-class reliability to the robustness of the scheme so as to facilitate its future deployment in Internet service provider (ISP) networks. The main contribution of the paper is the development of fast combinatorial algorithms for routing under the scheme with link and path restoration mechanisms so as to minimize the maximum utilization of any link in the network, or equivalently, maximize the throughput. The algorithms developed are fully polynomial time approximation schemes (FPTAS) - for any given epsi > 0, an FPTAS guarantees a solution that is within a (1 + epsi) -factor of the optimum and runs in time polynomial in the input size and 1/epsi. To the best of our knowledge, this is the first work in the literature that considers making the scheme resilient to link failures through pre-provisioned fast restoration mechanisms. We evaluate the performance of link and path restoration (in terms of throughput) and compare it with that of unprotected routing. For our experiments, we use actual ISP network topologies collected for the Rocketfuel project.
Keywords :
Internet; combinatorial mathematics; computer network reliability; polynomial approximation; telecommunication network routing; telecommunication traffic; ISP; Internet service provider networks; carrier-class reliability; combinatorial algorithms; end-to-end restoration mechanisms; fully polynomial time approximation schemes; intermediate nodes; link failures; network operation; throughput guaranteed restorable routing; two-phase routing; unprotected routing; Approximation algorithms; Bandwidth; Costs; Network topology; Polynomials; Robustness; Routing; Telecommunication traffic; Throughput; Web and internet services;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Network Protocols, 2006. ICNP '06. Proceedings of the 2006 14th IEEE International Conference on
Conference_Location :
Santa Barbara, CA
Print_ISBN :
1-4244-0593-9
Electronic_ISBN :
1-4244-0594-7
Type :
conf
DOI :
10.1109/ICNP.2006.320207
Filename :
4110286
Link To Document :
بازگشت