DocumentCode :
1654464
Title :
A novel framework for Scalable Pattern-driven image compression
Author :
Wei, Hai ; Zabuawala, Sakina ; Yadegar, Jacob ; De la Cruz, Julio
fYear :
2008
Firstpage :
872
Lastpage :
875
Abstract :
This paper presents a novel multi-filtering framework for achieving Scalable PAttern-driven Region-adaptive Compression (SPARC) of imagery. Based on a pattern-driven image perception, SPARC achieves efficient compression by modeling and encoding different (simple, structural and complex) visual patterns. Experimental results using various image datasets and comparison with the latest image compression standard corroborate the feasibility and efficiency of the SPARC technique.
Keywords :
data compression; image coding; Scalable PAttern-driven Region-adaptive Compression; image compression standard; image datasets; multifiltering framework; pattern-driven image perception; scalable pattern-driven image compression; visual pattern encoding; visual pattern modeling; Adaptive filters; Geometry; Image coding; Image edge detection; Jacobian matrices; Joining processes; Nonlinear filters; Predictive coding; Programmable logic arrays; Solid modeling; Image Compression; Scalable Coding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing, 2008. ICSP 2008. 9th International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-2178-7
Electronic_ISBN :
978-1-4244-2179-4
Type :
conf
DOI :
10.1109/ICOSP.2008.4697267
Filename :
4697267
Link To Document :
بازگشت