DocumentCode :
1654689
Title :
Online estimation of EMG signals model based on a renewal process
Author :
Monsifrot, J. ; Le Carpentier, Eric ; Aoustin, Y. ; Farina, Dario
Author_Institution :
Inst. de Rech. en Commun. et Cybernetique de Nantes, LUNAM Univ., Nantes, France
fYear :
2013
Firstpage :
944
Lastpage :
948
Abstract :
The paper presents an online estimation of parameters of a multi-input renewal Markov process. The underlying model is derived from the physiological generation of intramuscular electromyographic (iEMG) signals, which are recorded by wire electrodes. The iEMG is the sum of several sparse spikes trains and noise. An hidden Markov model, whose parameters express the muscular activity, is developed. The time duration between spikes is modeled with a discrete Weibull distribution, helping us to reduce the complexity of the estimation done with the help of a Bayes filter.
Keywords :
Bayes methods; Weibull distribution; biomedical electrodes; electromyography; hidden Markov models; medical signal processing; parameter estimation; Bayes filter; EMG signals model; discrete Weibull distribution; estimation complexity reduction; hidden Markov model; iEMG signals; intramuscular electromyographic signal; multiinput renewal Markov process; muscular activity; noise; online parameter estimation; physiological generation; renewal process; sparse spikes trains; wire electrodes; Computational modeling; Electromyography; Estimation; Hidden Markov models; Markov processes; Muscles; Shape; Markov process; Weibull distribution; bayesian method; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6637788
Filename :
6637788
Link To Document :
بازگشت