DocumentCode :
1655301
Title :
Prediction of influenza rates by particle filtering
Author :
Closas, Pau ; Bugallo, Monica F. ; Coma, Ermengol ; Mendez, Leonardo
Author_Institution :
Centre Tecnol. de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain
fYear :
2013
Firstpage :
1046
Lastpage :
1050
Abstract :
Predicting the course of influenza rates is extremely useful for the efficacy of planned vaccination programs. In this paper we address this problem by stating a dynamic state-space model that mathematically describes both the evolution of influenza rates and the observations obtained by a surveillance system. We then propose a prediction method based on particle filtering that accommodates the nonlinear nature of the model. Using real data we estimate the necessary model functions prior to the prediction step. Computer simulations reveal promising results of the proposed method.
Keywords :
diseases; medical signal processing; microorganisms; particle filtering (numerical methods); dynamic state-space model; influenza rate prediction; model function; particle filtering; surveillance system; vaccination program; Data models; Databases; Diseases; Mathematical model; Prediction algorithms; Predictive models; Surveillance; Time series prediction; influenza; nonlinear systems; particle filtering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6637809
Filename :
6637809
Link To Document :
بازگشت