DocumentCode :
1656503
Title :
A 2-D adaptive diagonal block Kalman filter for nonsymmetric half plane image models
Author :
Azimi-Sadjadi, M.R. ; Bannour, S. ; Citrin, S.
Author_Institution :
Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA
fYear :
1989
Firstpage :
1528
Abstract :
A 2-D diagonal block recursive representation for 2-D autoregressive (AR) image models with nonsymmetric half-plane (NSHP) regions of support that does not have noncausality problems is introduced. The relevant 2-D block Kalman filter equations are used to obtain suboptimal block filtered estimates for the blurred and noisy image. A recursive parameter identification scheme can be used online to update the model parameters at each processing window suggested. Simulation results are presented
Keywords :
Kalman filters; filtering and prediction theory; parameter estimation; picture processing; 2-D adaptive diagonal block Kalman filter; autoregressive; block recursive representation; noisy image; nonsymmetric half plane image models; parameter identification scheme; processing window; suboptimal block filtered estimates; Additive noise; Autocorrelation; Degradation; Equations; Filtering; Image enhancement; Image restoration; Kalman filters; Parameter estimation; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1989., IEEE International Symposium on
Conference_Location :
Portland, OR
Type :
conf
DOI :
10.1109/ISCAS.1989.100649
Filename :
100649
Link To Document :
بازگشت