DocumentCode :
1656774
Title :
On the application of multivariate kernel density estimation to image error concealment
Author :
Koloda, Jan ; Peinado, Antonio M. ; Sanchez, Victor
Author_Institution :
Dept. Teor. de la Senal, Telematica y Comun., Univ. de Granada, Granada, Spain
fYear :
2013
Firstpage :
1330
Lastpage :
1334
Abstract :
This paper proposes a methodology for the application of multivariate kernel density estimation (KDE) to MMSE-based image/video error concealment (EC). We show that the estimation of the kernel bandwidth matrix for EC must follow a criterion different from that of typical KDE problems. In particular, we propose a bandwidth built as the product of a structure matrix and a scale factor obtained with a minimum square error criterion. We show that our proposal can achieve average PSNR improvements larger than 1 dB with respect to other state-of-the-art techniques.
Keywords :
estimation theory; least mean squares methods; matrix algebra; nonparametric statistics; video coding; H.264/AVC codec; KDE problems; MMSE; PSNR; image error concealment; kernel bandwidth matrix esetimation; minimum square error criterion; multivariate kernel density estimation; scale factor; structure matrix; video error concealment; Bandwidth; Estimation; Kernel; Minimization; PSNR; Proposals; Vectors; error concealment; kernel estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6637867
Filename :
6637867
Link To Document :
بازگشت