DocumentCode :
1657340
Title :
Solution of Schrödinger Equation Based on State Transition Matrix
Author :
Yifan, Xing ; Qinwen, Xiao ; Diyang, Chu ; Xice, Sun ; Jun, Wu
Author_Institution :
Zhejiang Univ., Hangzhou
fYear :
2007
Firstpage :
589
Lastpage :
591
Abstract :
Based on the systematic discussion of normalization and the matrix representation of operator, we use state transition matrix to derive the solutions for stationary and non-stationary Schrodinger equation. Unlike the matrix representation of eigenstate in quantum information, this paper presents a matrix solution theory for superposition state, and provides a theoretical basis for applying the means of control to quantum systems.
Keywords :
Schrodinger equation; eigenvalues and eigenfunctions; matrix algebra; quantum theory; eigenstate matrix representation; matrix solution theory; nonstationary Schrodinger equation; quantum system control; state transition matrix; Control systems; Eigenvalues and eigenfunctions; Industrial control; Process control; Quantum mechanics; Schrodinger equation; Sun; Matrix Representation of Operator; Quantum Control; Schrödinger Equation; State Transition Matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference, 2007. CCC 2007. Chinese
Conference_Location :
Hunan
Print_ISBN :
978-7-81124-055-9
Electronic_ISBN :
978-7-900719-22-5
Type :
conf
DOI :
10.1109/CHICC.2006.4347594
Filename :
4347594
Link To Document :
بازگشت