DocumentCode :
1657909
Title :
ML estimation of wavelet regularization hyperparameters in inverse problems
Author :
Cavicchioli, Roberto ; Chaux, C. ; Blanc-Feraud, Laure ; Zanni, L.
Author_Institution :
Dept. of Phys., Comput. Sci. & Math., Univ. of Modena & Reggio Emilia, Modena, Italy
fYear :
2013
Firstpage :
1553
Lastpage :
1557
Abstract :
In this paper we are interested in regularizing hyperparameter estimation by maximum likelihood in inverse problems with wavelet regularization. One parameter per subband will be estimated by gradient ascent algorithm. We have to face with two main difficulties: i) sampling the a posteriori image distribution to compute the gradient; ii) choosing a suited step-size to ensure good convergence properties. We first show that introducing an auxiliary variable makes the sampling feasible using classical Metropolis-Hastings algorithm and Gibbs sampler. Secondly, we propose an adaptive step-size selection and a line-search strategy to improve the gradient-based method. Good performances of the proposed approach are demonstrated on both synthetic and real data.
Keywords :
convergence; gradient methods; inverse problems; maximum likelihood estimation; sampling methods; signal sampling; wavelet transforms; Gibbs sampler; ML estimation; adaptive step-size selection; classical metropolis-hastings algorithm; convergence property; gradient ascent algorithm; gradient-based method; inverse problems; line-search strategy; maximum likelihood; parameter per subband; posteriori image distribution; regularizing hyperparameter estimation; wavelet regularization hyperparameters; Acceleration; Convergence; Gradient methods; Image restoration; Inverse problems; Maximum likelihood estimation; Deconvolution; Gradient methods; Maximum likelihood estimation; Parameter estimation; Wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6637912
Filename :
6637912
Link To Document :
بازگشت