• DocumentCode
    1661383
  • Title

    Linear fuzzy clustering based on least absolute deviations

  • Author

    Honda, Katsuhiro ; Togo, Nobuhiro ; Fujii, Taro ; Ichihashi, Hidetomo

  • Author_Institution
    Graduate Sch. of Eng., Osaka Prefecture Univ., Japan
  • Volume
    2
  • fYear
    2002
  • fDate
    6/24/1905 12:00:00 AM
  • Firstpage
    1444
  • Lastpage
    1449
  • Abstract
    This paper proposes a technique of linear fuzzy clustering based on least absolute deviations. The novel method partitions a data set into several linear clusters by extracting local minor components. Using the least absolute deviations, the method provides robust clustering that is free from the influences of outliers
  • Keywords
    fuzzy set theory; pattern clustering; data set partitioning; least absolute deviations; linear fuzzy clustering; local minor component extraction; outliers; robust clustering; Clustering algorithms; Clustering methods; Data mining; Eigenvalues and eigenfunctions; Fuzzy sets; Principal component analysis; Prototypes; Robustness; Scattering; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on
  • Conference_Location
    Honolulu, HI
  • Print_ISBN
    0-7803-7280-8
  • Type

    conf

  • DOI
    10.1109/FUZZ.2002.1006717
  • Filename
    1006717