DocumentCode
1661643
Title
Fuzzy c-regression model with a new cluster validity criterion
Author
Kung, Chung-Chun ; Lin, Chih-Chien
Author_Institution
Dept. of Electr. Eng., Tatung Univ., Taipei, Taiwan
Volume
2
fYear
2002
fDate
6/24/1905 12:00:00 AM
Firstpage
1499
Lastpage
1504
Abstract
In this paper, a new cluster validity criterion designed for a fuzzy c-regression model algorithm with hyperplane-shaped cluster representatives is proposed. The simulation results show that the proposed cluster validity criterion is able to indicate the number of clusters correctly if the data have a hyperplane-type structure
Keywords
data analysis; data structures; fuzzy set theory; modelling; pattern clustering; statistical analysis; cluster number; cluster validity criterion; fuzzy c-means algorithm; fuzzy c-regression model; hyperplane-shaped cluster representatives; hyperplane-type data structure; simulation; Algorithm design and analysis; Clustering algorithms; Entropy; Fuzzy sets; Parameter estimation; Partitioning algorithms; Yield estimation;
fLanguage
English
Publisher
ieee
Conference_Titel
Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on
Conference_Location
Honolulu, HI
Print_ISBN
0-7803-7280-8
Type
conf
DOI
10.1109/FUZZ.2002.1006728
Filename
1006728
Link To Document