• DocumentCode
    1661643
  • Title

    Fuzzy c-regression model with a new cluster validity criterion

  • Author

    Kung, Chung-Chun ; Lin, Chih-Chien

  • Author_Institution
    Dept. of Electr. Eng., Tatung Univ., Taipei, Taiwan
  • Volume
    2
  • fYear
    2002
  • fDate
    6/24/1905 12:00:00 AM
  • Firstpage
    1499
  • Lastpage
    1504
  • Abstract
    In this paper, a new cluster validity criterion designed for a fuzzy c-regression model algorithm with hyperplane-shaped cluster representatives is proposed. The simulation results show that the proposed cluster validity criterion is able to indicate the number of clusters correctly if the data have a hyperplane-type structure
  • Keywords
    data analysis; data structures; fuzzy set theory; modelling; pattern clustering; statistical analysis; cluster number; cluster validity criterion; fuzzy c-means algorithm; fuzzy c-regression model; hyperplane-shaped cluster representatives; hyperplane-type data structure; simulation; Algorithm design and analysis; Clustering algorithms; Entropy; Fuzzy sets; Parameter estimation; Partitioning algorithms; Yield estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on
  • Conference_Location
    Honolulu, HI
  • Print_ISBN
    0-7803-7280-8
  • Type

    conf

  • DOI
    10.1109/FUZZ.2002.1006728
  • Filename
    1006728