Title :
Sensor placement in heterogeneous sensor networks
Author :
Wei Meng ; Lihua Xie ; Wendong Xiao
Author_Institution :
Centre for E-City, Nanyang Technol. Univ., Singapore, Singapore
Abstract :
Source localization is an important application of wireless sensor networks (WSNs). Many types of sensors can be used for source localization, e.g. range-only sensors, bearing-only sensors and time-of-arrival (TOA) sensors, etc. It is well known that the relative sensor-source geometry can significantly affect the performance of any particular localization algorithm. Existing works in the literature mainly deal with the geometry analysis for a single type of sensors. However, in real applications, different types of sensors may be utilized for source localization simultaneously. Hence, in this paper, we consider the optimal sensor placement problem in heterogeneous sensor networks, where two types of sensors are deployed for source localization. Relative optimal sensor-source configurations with the minimum number of sensors for source localization, are identified under the D-optimality criterion with potential extensions to a general case. Explicit characterizations of optimal sensor-source geometries are given for hybrid range-only and bearing-only sensors as well as hybrid bearing-only and TOA sensors, respectively.
Keywords :
geometry; wireless sensor networks; WSN; heterogeneous sensor networks; hybrid TOA sensors; hybrid bearing-only sensors; range-only sensors; relative optimal sensor-source configurations; relative sensor-source geometry; sensor placement; source localization; time-of-arrival sensors; wireless sensor networks; Educational institutions; Geometry; Position measurement; Robot sensing systems; Vectors; Wireless sensor networks;
Conference_Titel :
Control Automation Robotics & Vision (ICARCV), 2012 12th International Conference on
Conference_Location :
Guangzhou
Print_ISBN :
978-1-4673-1871-6
Electronic_ISBN :
978-1-4673-1870-9
DOI :
10.1109/ICARCV.2012.6485240