DocumentCode :
1662742
Title :
Predictive Data Stream Filtering
Author :
Li, Jun ; Zang, Wenyu ; Tan, Jianlong ; Zhang, Peng
Author_Institution :
Sch. of Comput. Sci., Beijing Univ. of Posts & Telecommun., Beijing, China
Volume :
3
fYear :
2011
Firstpage :
237
Lastpage :
240
Abstract :
In multimedia stream matching applications, user experience is becoming more and more important. In this paper, we study the problem of predictive stream matching, where a large number of queries are evaluated before the actual stream data arrive. This is equivalent to developing predictive algorithms for the filters registered on data streams. To this end, We propose to efficiently order the pipeline filters in multimedia streams under the Marko assumption. Our experimental evaluations validate that our predictive data stream filtering framework is able to provide an efficient solution for evaluating large number of queries on streams.
Keywords :
Markov processes; information filtering; media streaming; query processing; Markov assumption; multimedia stream matching applications; pipeline filters; predictive algorithms; predictive data stream filtering framework; stream query; Data mining; History; Markov processes; Multimedia communication; Prediction algorithms; Real time systems; Streaming media; Data Stream; Predictive Filtering; Query;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on
Conference_Location :
Lyon
Print_ISBN :
978-1-4577-1373-6
Electronic_ISBN :
978-0-7695-4513-4
Type :
conf
DOI :
10.1109/WI-IAT.2011.95
Filename :
6040849
Link To Document :
بازگشت