DocumentCode :
1663669
Title :
Model driven state estimation for target pursuit
Author :
Basit, Abdul ; Dailey, Matthew N. ; Laksanacharoen, Pudit
Author_Institution :
Comput. Sci. & Inf. Manage, Asian Inst. of Technol. Pathumthani, Pathumthani, Thailand
fYear :
2012
Firstpage :
1077
Lastpage :
1082
Abstract :
Autonomous target pursuit is an extremely useful technology for surveillance applications. In this paper, we derive and evaluate, in a realistic simulation, a novel tracking algorithm for vision-based pursuit. We assume a simple ground-based surveillance robot equipped with a single monocular camera. For the sensor, we propose the use of a color histogram based region tracker. We integrate models of the robot´s kinematics and the target´s dynamics with a model of the color region tracking sensor via an extended Kalman filter. Detailed simulation results demonstrate that the tracking algorithm substantially reduces the relative position estimation error introduced by noisy color region tracking. The algorithm thus enables target pursuit based on an extremely noisy but simple and low cost sensor.
Keywords :
Kalman filters; image colour analysis; nonlinear filters; robot dynamics; robot kinematics; robot vision; sensors; tracking; video surveillance; autonomous target pursuit; color histogram; color region tracking sensor; extended Kalman filter; ground-based surveillance robot; model driven state estimation; monocular camera; noisy color region tracking; region tracker; relative position estimation error; robot dynamics; robot kinematics; surveillance application; tracking algorithm; vision-based pursuit; Cameras; Noise; Robot kinematics; Robot vision systems; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Automation Robotics & Vision (ICARCV), 2012 12th International Conference on
Conference_Location :
Guangzhou
Print_ISBN :
978-1-4673-1871-6
Electronic_ISBN :
978-1-4673-1870-9
Type :
conf
DOI :
10.1109/ICARCV.2012.6485307
Filename :
6485307
Link To Document :
بازگشت