• DocumentCode
    1663669
  • Title

    Model driven state estimation for target pursuit

  • Author

    Basit, Abdul ; Dailey, Matthew N. ; Laksanacharoen, Pudit

  • Author_Institution
    Comput. Sci. & Inf. Manage, Asian Inst. of Technol. Pathumthani, Pathumthani, Thailand
  • fYear
    2012
  • Firstpage
    1077
  • Lastpage
    1082
  • Abstract
    Autonomous target pursuit is an extremely useful technology for surveillance applications. In this paper, we derive and evaluate, in a realistic simulation, a novel tracking algorithm for vision-based pursuit. We assume a simple ground-based surveillance robot equipped with a single monocular camera. For the sensor, we propose the use of a color histogram based region tracker. We integrate models of the robot´s kinematics and the target´s dynamics with a model of the color region tracking sensor via an extended Kalman filter. Detailed simulation results demonstrate that the tracking algorithm substantially reduces the relative position estimation error introduced by noisy color region tracking. The algorithm thus enables target pursuit based on an extremely noisy but simple and low cost sensor.
  • Keywords
    Kalman filters; image colour analysis; nonlinear filters; robot dynamics; robot kinematics; robot vision; sensors; tracking; video surveillance; autonomous target pursuit; color histogram; color region tracking sensor; extended Kalman filter; ground-based surveillance robot; model driven state estimation; monocular camera; noisy color region tracking; region tracker; relative position estimation error; robot dynamics; robot kinematics; surveillance application; tracking algorithm; vision-based pursuit; Cameras; Noise; Robot kinematics; Robot vision systems; Target tracking;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Automation Robotics & Vision (ICARCV), 2012 12th International Conference on
  • Conference_Location
    Guangzhou
  • Print_ISBN
    978-1-4673-1871-6
  • Electronic_ISBN
    978-1-4673-1870-9
  • Type

    conf

  • DOI
    10.1109/ICARCV.2012.6485307
  • Filename
    6485307