Title :
Quantization For Distributed Estimation in Large Scale Sensor Networks
Author :
Venkitasubramaniam, Parv ; Mergen, G. ; Lang Tong ; Swami, Ananthram
Author_Institution :
Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY
Abstract :
We study the problem of quantization for distributed parameter estimation in large scale sensor networks. Assuming a maximum likelihood estimator at the fusion center, we show that the Fisher information is maximized by a score-function quantizer. This provides a tight bound on best possible MSE for any unbiased estimator. Furthermore, we show that for a general convex metric, the optimal quantizer belongs to the class of score function quantizers. We also discuss a few practical applications of our results in optimizing estimation performance in distributed and temporal estimation problems
Keywords :
distributed sensors; maximum likelihood estimation; quantisation (signal); sensor fusion; Fisher information; distributed parameter estimation quantization; fusion center; general convex metric; large scale sensor networks; maximum likelihood estimator; score-function quantizer; temporal estimation problems; unbiased estimator; Batteries; Data processing; Intelligent networks; Laboratories; Large-scale systems; Maximum likelihood estimation; Parameter estimation; Quantization; Sensor fusion; Sensor phenomena and characterization;
Conference_Titel :
Intelligent Sensing and Information Processing, 2005. ICISIP 2005. Third International Conference on
Conference_Location :
Bangalore
Print_ISBN :
0-7803-9588-3
DOI :
10.1109/ICISIP.2005.1619423