Title :
Trading memory for randomness
Author :
Chatterjee, Krishnendu ; De Alfaro, Luca ; Henzinger, Thomas A.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
Abstract :
Strategies in repeated games can be classified as to whether or not they use memory and/or randomization. We consider Markov decision processes and 2-player graph games, both of the deterministic and probabilistic varieties. We characterize when memory and/or randomization are required for winning with respect to various classes of ω-regular objectives, noting particularly when the use of memory can be traded for the use of randomization. In particular, we show that Markov decision processes allow randomized memoryless optimal strategies for all Muller objectives. Furthermore, we show that 2-player probabilistic graph games allow randomized memoryless strategies for winning with probability 1 those Muller objectives which are upward-closed. Upward-closure means that if a set a of infinitely repeating vertices is winning, then all supersets of α are also winning.
Keywords :
Markov processes; decision theory; directed graphs; game theory; optimisation; probabilistic logic; probability; random processes; set theory; 2-player graph game; Markov decision process; Muller objectives; probability; randomized memoryless optimal strategies; Artificial intelligence; Control system synthesis; Probability distribution;
Conference_Titel :
Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. First International Conference on the
Print_ISBN :
0-7695-2185-1
DOI :
10.1109/QEST.2004.1348035