DocumentCode
1665779
Title
A new log-likelihood gradient formula for continuous time stochastic systems with uncertain matrix
Author
Leland, Robert P.
Author_Institution
Dept. of Electr. Eng., Alabama Univ., Tuscaloosa, AL, USA
Volume
3
fYear
1994
Firstpage
2170
Abstract
We use a finitely additive white noise approach to derive an explicit expression for the gradient of the log-likelihood ratio for system parameter estimation in the case of a continuous time linear dynamic stochastic system and noisy observations. Our gradient formula, includes the smoother estimates of the state, and derivatives of the system matrices, but no derivatives of the estimates or error covariances. A scheme to calculate the log-likelihood gradient without solving any Ricatti equations is described
Keywords
continuous time systems; linear systems; matrix algebra; parameter estimation; state estimation; stochastic systems; white noise; additive white noise; continuous time stochastic systems; error covariances; linear dynamic systems; log-likelihood gradient formula; parameter estimation; state estimation; system matrices; uncertain matrix; Additive white noise; Covariance matrix; Equations; Indium tin oxide; Kalman filters; Neural networks; Parameter estimation; State estimation; Stochastic resonance; Stochastic systems;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Conference_Location
Lake Buena Vista, FL
Print_ISBN
0-7803-1968-0
Type
conf
DOI
10.1109/CDC.1994.411408
Filename
411408
Link To Document