Title :
Evaluating job packing in warehouse-scale computing
Author :
Verma, A. ; Korupolu, Madhukar ; Wilkes, J.
Author_Institution :
Google Inc., Mountain View, CA, USA
Abstract :
One of the key factors in selecting a good scheduling algorithm is using an appropriate metric for comparing schedulers. But which metric should be used when evaluating schedulers for warehouse-scale (cloud) clusters, which have machines of different types and sizes, heterogeneous workloads with dependencies and constraints on task placement, and long-running services that consume a large fraction of the total resources? Traditional scheduler evaluations that focus on metrics such as queuing delay, makespan, and running time fail to capture important behaviors - and ones that rely on workload synthesis and scaling often ignore important factors such as constraints. This paper explains some of the complexities and issues in evaluating warehouse scale schedulers, focusing on what we find to be the single most important aspect in practice: how well they pack long-running services into a cluster. We describe and compare four metrics for evaluating the packing efficiency of schedulers in increasing order of sophistication: aggregate utilization, hole filling, workload inflation and cluster compaction.
Keywords :
cloud computing; packaging; production engineering computing; scheduling; warehousing; aggregate utilization; cluster compaction; heterogeneous workloads; hole filling; job packing evaluation; long-running services; machine sizes; machine types; resource consumption; scheduler packing efficiency evaluation; scheduling algorithm; task placement constraints; task placement dependencies; warehouse scale schedulers; warehouse-scale cloud clusters; warehouse-scale computing; workload inflation; Aggregates; Clustering algorithms; Compaction; Measurement; Production; Random access memory; Schedules;
Conference_Titel :
Cluster Computing (CLUSTER), 2014 IEEE International Conference on
Conference_Location :
Madrid
DOI :
10.1109/CLUSTER.2014.6968735