Title :
POSTER: Utilizing dataflow-based execution for coupled cluster methods
Author :
McCraw, Heike ; Danalis, Anthony ; Herault, Thomas ; Bosilca, George ; Dongarra, Jack ; Kowalski, Karol ; Windus, Theresa L.
Author_Institution :
Innovative Comput. Lab. (ICL), Univ. of Tennessee, Knoxville, TN, USA
Abstract :
Computational chemistry comprises one of the driving forces of High Performance Computing. In particular, manybody methods, such as Coupled Cluster methods (CC) (Bartlett and Musial, 2007) of the quantum chemistry package NWCHEM (Valiev, et.al., 2010), are of particular interest for the applied chemistry community. With the increase in scale, complexity, and heterogeneity of modern platforms, traditional programming models fail to deliver the expected performance scalability. On our way to Exascale, we believe that dataflow-based programming models - in contrast to the control flow model (e.g., as implemented in languages such as C) - may be the only viable way for achieving and maintaining computation at scale. In this paper, we discuss a dataflow-based programming model and its applicability to NWCHEM´s CC methods. Our dataflow version of the CC kernels breaks down the algorithm into finer grained tasks with explicitly defined data dependencies. As a result, the serialization imposed by the traditional, linear algorithms can be transformed into parallelism, allowing the overall computation to scale to much larger computational resources. We build this experiment using the Parallel Runtime Scheduling and Execution Control (PARSEC) framework (Bosilca, et.al., 2012) - a task-based dataflow-driven execution engine - that enables efficient task scheduling on distributed systems.
Keywords :
chemistry computing; data flow computing; distributed processing; quantum chemistry; scheduling; CC kernels; Exascale; NWCHEM CC methods; NWCHEM quantum chemistry package; PARSEC framework; computational chemistry; coupled cluster methods; dataflow-based execution; dataflow-based programming models; distributed systems; high performance computing; manybody methods; parallel runtime scheduling and execution control framework; task scheduling; task-based dataflow-driven execution engine; Algorithms; Chemistry; Computational modeling; Kernel; Laboratories; Parallel processing; Programming;
Conference_Titel :
Cluster Computing (CLUSTER), 2014 IEEE International Conference on
Conference_Location :
Madrid
DOI :
10.1109/CLUSTER.2014.6968738