Title :
The Decomposition of U(n) into XU(n) and ZU(n)
Author :
De Vos, Alexis ; De Baerdemacker, Stijn
Author_Institution :
Vakgroep Elektronika en Informatiesystemen, Univ. Gent, Ghent, Belgium
Abstract :
Any matrix of the unitary group U(n) can (up to a global phase) be decomposed into 2n-1 matrices from two subgroups, denoted XU(n) and ZU(n). This leads to the decomposition of an arbitrary quantum circuit into NEGATOR circuits and PHASOR circuits. The NEGATOR circuits are closely related to classical reversible computation.
Keywords :
logic circuits; matrix algebra; quantum gates; NEGATOR circuits; PHASOR circuits; arbitrary quantum circuit decomposition; reversible computation; unitary group matrix; Computational modeling; Logic gates; Matrix decomposition; Physics; Quantum computing; quantum computing; reversible computing;
Conference_Titel :
Multiple-Valued Logic (ISMVL), 2014 IEEE 44th International Symposium on
Conference_Location :
Bremen
DOI :
10.1109/ISMVL.2014.38