DocumentCode :
1668604
Title :
Multimodal analysis of speech prosody and upper body gestures using hidden semi-Markov models
Author :
Bozkurt, E. ; Asta, Shahriar ; Ozkul, Serkan ; Yemez, Y. ; Erzin, E.
Author_Institution :
Multimedia, Vision & Graphics Lab., Koc Univ., Istanbul, Turkey
fYear :
2013
Firstpage :
3652
Lastpage :
3656
Abstract :
Gesticulation is an essential component of face-to-face communication, and it contributes significantly to the natural and affective perception of human-to-human communication. In this work we investigate a new multimodal analysis framework to model relationships between intonational and gesture phrases using the hidden semi-Markov models (HSMMs). The HSMM framework effectively associates longer duration gesture phrases to shorter duration prosody clusters, while maintaining realistic gesture phrase duration statistics. We evaluate the multimodal analysis framework by generating speech prosody driven gesture animation, and employing both subjective and objective metrics.
Keywords :
gesture recognition; hidden Markov models; modal analysis; speech recognition; HSMM; affective perception; face-to-face communication; gesticulation; gesture animation; hidden semiMarkov models; human-to-human communication; intonational phrase; multimodal analysis; natural perception; prosody clusters; realistic gesture phrase duration statistics; speech prosody; upper body gestures; Analytical models; Animation; Feature extraction; Hidden Markov models; Joints; Mathematical model; Speech; Prosody analysis; gesture animation; gesture segmentation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638339
Filename :
6638339
Link To Document :
بازگشت