DocumentCode :
1675243
Title :
Learning shape categories by clustering shock trees
Author :
Luo, Bin ; Robles-Kelly, A. ; Torsello, A. ; Wilson, R.C. ; Hancock, E.R.
Author_Institution :
Dept. of Comput. Sci., York Univ., UK
Volume :
3
fYear :
2001
fDate :
6/23/1905 12:00:00 AM
Firstpage :
672
Abstract :
This paper investigates whether meaningful shape categories can be identified in an unsupervised way by clustering shock-trees. We commence by computing weighted and unweighted edit distances between shock-trees extracted from the Hamilton-Jacobi skeleton of 2D binary shapes. Next we use an EM-like algorithm to locate pairwise clusters in the pattern of edit-distances. We show that when the tree edit distance is weighted using the geometry of the skeleton, then the clustering method returns meaningful shape categories
Keywords :
image recognition; iterative methods; pattern clustering; trees (mathematics); unsupervised learning; 2D binary shapes; EM-like algorithm; Hamilton-Jacobi skeleton; clustering method; images; pairwise clusters; shape categories; shock trees; tree edit distance; unweighted edit distances; weighted edit distances; Clustering algorithms; Computer science; Electric shock; Equations; Geometry; Jacobian matrices; Machine learning; Machine learning algorithms; Shape; Skeleton;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2001. Proceedings. 2001 International Conference on
Conference_Location :
Thessaloniki
Print_ISBN :
0-7803-6725-1
Type :
conf
DOI :
10.1109/ICIP.2001.958208
Filename :
958208
Link To Document :
بازگشت