Title :
Analysis of LSB based image steganography techniques
Author :
Chandramouli, R. ; Memon, Nasir
Author_Institution :
Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA
fDate :
6/23/1905 12:00:00 AM
Abstract :
There have been many techniques for hiding messages in images in such a manner that the alterations made to the image are perceptually indiscernible. However, the question whether they result in images that are statistically indistinguishable from untampered images has not been adequately explored. We look at some specific image based steganography techniques and show that an observer can indeed distinguish between images carrying a hidden message and images which do not carry a message. We derive a closed form expression of the probability of detection and false alarm in terms of the number of bits that are hidden. This leads us to the notion of steganographic capacity, that is, how many bits can we hide in a message without causing statistically significant modifications? Our results are able to provide an upper bound on the this capacity. Our ongoing work relates to adaptive steganographic techniques that take explicit steps to foil the detection mechanisms. In this case we hope to show that the number of bits that can be embedded increases significantly
Keywords :
adaptive signal processing; copy protection; data compression; data encapsulation; data handling; image coding; probability; security of data; LSB based image steganography; adaptive steganographic techniques; closed form expression; communication theory; cover-objects; detection mechanisms; detection probability; false alarm probability; information theory; message hiding; stego-objects; untampered images; upper bound; watermarking; Computer science; Context; Entropy; Graphics; Helium; Image analysis; Probability distribution; Steganography; Upper bound;
Conference_Titel :
Image Processing, 2001. Proceedings. 2001 International Conference on
Conference_Location :
Thessaloniki
Print_ISBN :
0-7803-6725-1
DOI :
10.1109/ICIP.2001.958299