DocumentCode :
1678477
Title :
Incremental neural learning using AdaBoost
Author :
Murphey, Yi L. ; Chen, Zhihang ; Feldkamp, Lee
Author_Institution :
Dept. of Electr. & Comput. Eng., Michigan Univ., Dearborn, MI, USA
Volume :
3
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
2304
Lastpage :
2308
Abstract :
An incremental learning system updates its hypotheses as new instances arrive without reexamining old instances. This paper describes our research in incremental neural learning. We developed an incremental neural learning (INL) framework that allows a neural network system to incrementally learn new knowledge from only new data without forgetting the existing knowledge. We have applied the INL to a vehicle fault diagnostics problem and our experiments showed very positive results
Keywords :
Ada; learning (artificial intelligence); neural nets; AdaBoost; INL framework; incremental learning; incremental neural learning; neural network system; vehicle fault diagnostics problem; Backpropagation; Decision trees; Knowledge management; Learning systems; Machine learning; Manufacturing industries; Manufacturing processes; Neural networks; Real time systems; Vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on
Conference_Location :
Honolulu, HI
ISSN :
1098-7576
Print_ISBN :
0-7803-7278-6
Type :
conf
DOI :
10.1109/IJCNN.2002.1007501
Filename :
1007501
Link To Document :
بازگشت