• DocumentCode
    1679527
  • Title

    Robust Value-at-Risk Optimization with Interval Random Uncertainty Set

  • Author

    Chen, Wei ; Tan, Shaohua

  • Author_Institution
    Key Lab. of High Confidence Software Technol., Peking Univ., Beijing, China
  • Volume
    1
  • fYear
    2010
  • Firstpage
    281
  • Lastpage
    286
  • Abstract
    This paper addresses a new uncertainty set - interval random uncertainty set for robust Value-at-Risk optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust Value-at-Risk optimization under interval random uncertainty sets in the elements of mean vector. Numerical experiments with real market data indicate that our approach results in better portfolio performance.
  • Keywords
    constraint handling; investment; optimisation; random processes; risk management; deviation measures; distributional asymmetry; interval random chance-constrained programming; interval random uncertainty set; mean vector; portfolio performance; real-world data; robust value-at-risk optimization; Computational modeling; Optimization; Portfolios; Programming; Random variables; Robustness; Uncertainty; Value-at-risk; interval random chance-constrained programming; interval random uncertainty set;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on
  • Conference_Location
    Arras
  • ISSN
    1082-3409
  • Print_ISBN
    978-1-4244-8817-9
  • Type

    conf

  • DOI
    10.1109/ICTAI.2010.48
  • Filename
    5670047