DocumentCode :
1679527
Title :
Robust Value-at-Risk Optimization with Interval Random Uncertainty Set
Author :
Chen, Wei ; Tan, Shaohua
Author_Institution :
Key Lab. of High Confidence Software Technol., Peking Univ., Beijing, China
Volume :
1
fYear :
2010
Firstpage :
281
Lastpage :
286
Abstract :
This paper addresses a new uncertainty set - interval random uncertainty set for robust Value-at-Risk optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust Value-at-Risk optimization under interval random uncertainty sets in the elements of mean vector. Numerical experiments with real market data indicate that our approach results in better portfolio performance.
Keywords :
constraint handling; investment; optimisation; random processes; risk management; deviation measures; distributional asymmetry; interval random chance-constrained programming; interval random uncertainty set; mean vector; portfolio performance; real-world data; robust value-at-risk optimization; Computational modeling; Optimization; Portfolios; Programming; Random variables; Robustness; Uncertainty; Value-at-risk; interval random chance-constrained programming; interval random uncertainty set;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on
Conference_Location :
Arras
ISSN :
1082-3409
Print_ISBN :
978-1-4244-8817-9
Type :
conf
DOI :
10.1109/ICTAI.2010.48
Filename :
5670047
Link To Document :
بازگشت