DocumentCode :
1680460
Title :
New parallel algorithms for back-propagation learning
Author :
Alves, R.Lde.S. ; De Melo, Jorge D. ; Net, Adrião D Dória ; Albuquerque, Ana Claudia M L
Author_Institution :
Departamento de Engenharia de Computacao e Automacao, Univ. Fed. do Rio Grande do Norte, Natal, Brazil
Volume :
3
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
2686
Lastpage :
2691
Abstract :
It is presented in this work new parallel algorithms to train a multilayer perceptron network using the error backpropagation algorithm. An analysis of the different paralleling strategies used is shown and aspects such as-task definition and communications profile were taken into account. An application in image compression illustrates the capacity of these new procedures when compared to the classical approach and to other parallel implementations
Keywords :
backpropagation; multilayer perceptrons; parallel algorithms; back-propagation learning; communications profile; error backpropagation algorithm; image compression; multilayer perceptron network; parallel algorithms; paralleling strategies; task definition; Computer networks; Concurrent computing; Cost function; Image coding; Multilayer perceptrons; Neural networks; Neurons; Parallel algorithms; Parallel processing; Scalability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on
Conference_Location :
Honolulu, HI
ISSN :
1098-7576
Print_ISBN :
0-7803-7278-6
Type :
conf
DOI :
10.1109/IJCNN.2002.1007571
Filename :
1007571
Link To Document :
بازگشت