DocumentCode :
1680573
Title :
Bayesian nonparametric state and impulsive measurement noise density estimation in nonlinear dynamic systems
Author :
Jaoua, Nouha ; Duflos, Emmanuel ; Vanheeghe, Philippe ; Septier, Francois
Author_Institution :
LAGIS, Villeneuve-d´Ascq, France
fYear :
2013
Firstpage :
5755
Lastpage :
5759
Abstract :
In this paper, we address the problem of online state and measurement noise density estimation in nonlinear dynamic state-space-models. We are especially interested in making inference in the presence of impulsive and multimodal noise. The proposed method relies on the introduction of a flexible Bayesian nonparametric noise model based on Dirichlet Process mixtures. A novel approach based on sequential Monte Carlo methods is proposed to perform the optimal online estimation. Simulation results demonstrate the efficiency and the robustness of this approach.
Keywords :
Bayes methods; Monte Carlo methods; impulse noise; noise measurement; nonparametric statistics; particle filtering (numerical methods); Bayesian nonparametric state; Dirichlet process mixtures; flexible Bayesian nonparametric noise model; impulsive measurement noise density estimation; inference; multimodal noise; nonlinear dynamic state-space-models; nonlinear dynamic systems; optimal online estimation; particle filter; sequential Monte Carlo methods; Bayes methods; Density measurement; Estimation; Indexes; Monte Carlo methods; Noise; Noise measurement; α-stable process; Bayesian nonparametric; Dirichlet Process Mixture; impulsive noise; particle filter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638767
Filename :
6638767
Link To Document :
بازگشت