DocumentCode :
1680781
Title :
Spectral Graph Analysis of Quasi-Cyclic Codes
Author :
Smarandache, Roxana ; Flanagan, Mark F.
Author_Institution :
Dept. of Math. & Stat., San Diego State Univ., San Diego, CA, USA
fYear :
2009
Firstpage :
1
Lastpage :
5
Abstract :
In this paper we analyze the bound on the additive white Gaussian noise channel (AWGNC) pseudo-weight of a (c, d)-regular linear block code based on the two largest values ¿1 > ¿2 of the eigenvalues of HTH: wp min > (H) ¿ n = 2c-¿2/¿1-¿2. In particular, we analyze (c, d)-regular quasi-cyclic (QC) codes of length rL described by J × L block parity-check matrices with circulant block entries of size r × r. We proceed by showing how the problem of computing the eigenvalues of the rL × rL matrix HTH can be reduced to the problem of computing eigenvalues for r matrices of size L × L. We also give a necessary condition for the bound to be attained for a circulant matrix H and show a few classes of cyclic codes satisfying this criterion.
Keywords :
block codes; cyclic codes; eigenvalues and eigenfunctions; graph theory; matrix algebra; parity check codes; additive white Gaussian noise channel; block parity-check matrices; eigenvalues; linear block code; quasicyclic codes; spectral graph analysis; Additive white noise; Block codes; Educational institutions; Eigenvalues and eigenfunctions; Hamming distance; Mathematics; Parity check codes; Polynomials; Spectral analysis; Statistical analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE
Conference_Location :
Honolulu, HI
ISSN :
1930-529X
Print_ISBN :
978-1-4244-4148-8
Type :
conf
DOI :
10.1109/GLOCOM.2009.5425400
Filename :
5425400
Link To Document :
بازگشت