Title :
Functional data analysis with multi layer perceptrons
Author :
Rossi, Fabrice ; Conan-Guez, Brieuc ; Fleuret, François
Author_Institution :
LISE/CEREMADE, Univ. Paris-IX Dauphine, Paris, France
fDate :
6/24/1905 12:00:00 AM
Abstract :
In this paper, we propose a way to apply multilayer perceptron (MLP) to functional data analysis. We introduce a computation model for functional input data and we show that this model is a well behaving extension of MLP: we show that the proposed model has the universal approximation property. Moreover, parameter estimation for this model is consistent. As a conclusion, we demonstrate functional MLP possibilities on simulated data and show they perform better than numerical MLP for a given number of parameters
Keywords :
data analysis; multilayer perceptrons; parameter estimation; computation model; functional data analysis; multilayer perceptrons; parameter estimation; universal approximation property; Computational modeling; Data analysis; Neurons; Parameter estimation; Predictive models; Spline; Temperature; Vectors;
Conference_Titel :
Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on
Conference_Location :
Honolulu, HI
Print_ISBN :
0-7803-7278-6
DOI :
10.1109/IJCNN.2002.1007599