DocumentCode :
1681450
Title :
Set constraint discovery: missing sensor data restoration using autoassociative regression machines
Author :
Narayanan, Sreeram ; Marks, R.J., II ; Vian, John L. ; Choi, J.J. ; El-Sharkawi, M.A. ; Thompson, Benjamin B.
Author_Institution :
Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA
Volume :
3
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
2872
Lastpage :
2877
Abstract :
A sensor array can generate interdependent readings among the sensors. If the dependence is sufficiently strong, the readings may contain redundancy to the degree that the readings from one or more lost sensors may be able to be accurately estimated from those remaining. An autoassociative regression machine can learn the data interrelationships through inspection of historical data. Once trained, the autoassociative machine can be used to restore one or more arbitrary lost sensors if the data dependency is sufficiently strong. Recovery techniques include alternating projection onto convex sets (POCS) and iterative search algorithms
Keywords :
array signal processing; convex programming; iterative methods; neural nets; search problems; alternating projection onto convex sets; autoassociative regression machine; autoassociative regression machines; iterative search algorithms; sensor array; sensor data restoration; set constraint discovery; Computational intelligence; Databases; Intelligent sensors; Laboratories; Phased arrays; Sensor arrays; Sensor phenomena and characterization; Sensor systems; Signal restoration; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on
Conference_Location :
Honolulu, HI
ISSN :
1098-7576
Print_ISBN :
0-7803-7278-6
Type :
conf
DOI :
10.1109/IJCNN.2002.1007604
Filename :
1007604
Link To Document :
بازگشت